
Item Set Extraction of Mining Association Rule

Shabana Yasmeen, Prof. P.Pradeep Kumar, A.Ranjith Kumar
Department CSE, Vivekananda Institute of Technology and Science, Karimnagar, A.P, India

Abstract: Most of the research activities in association rule
mining focuses on defining efficient algorithms for item set
extraction. To reduce the computational complexity of item set
extraction, support constraint is enforced on the extracted item
sets.The IMine index structure can be efficiently exploited by
different item set extraction algorithms. This paper presents the
IMine index, a general and compact structure which provides
tight integration of item set extraction in a relational DBMS.
Since no constraint is enforced during the index creation phase,
IMine provides a complete representation of the original
database. To reduce the I/O cost, data accessed together during
the same extraction phase are clustered on the same disk block.
The IMine index has been integrated into the PostgreSQL
DBMS and exploits its physical level access methods.
Experiments, run for both sparse and dense data distributions,
show the efficiency of the proposed index and its linear
scalability also for large data sets. Item set mining supported by
the IMine index shows performance always comparable with,
and often (especially for lowsupports) better than, state-of-the-
art algorithms accessing data on flat file.

Key Words: mining, item set extraction, indexing.

1. INTRODUCTION
ASSOCIATION rule mining discovers correlations among
data items in a transactional database D. Each transaction in
D is a set of data items. Association rules are usually
represented in the form A ! B, where A and B are item sets,
i.e., sets of data items. Item sets are characterized by their
frequency of occurrence in D, which is called support.
Research activity usually focuses on defining efficient
algorithms for item set extraction, which represents the most
computationally intensive knowledge extraction task in
association rule mining [1]. The data to be analyzed is
usually stored into binary files, possibly extracted from a
DBMS. The proposed work presents an incremental update
strategy to work on the dynamic transaction of DMBS for
efficient item set extraction. Since no support threshold is
enforced during the index creation phase, the incremental
update is feasible without accessing the original transactional
database. The index performance in terms of incremental
updates is experimentally evaluated with data sets
characterized by different size and data distribution. The
execution time of frequent item set extraction based on
incremental update strategy of IMine is better than the state-
of-the-art algorithm i.e., existing IMine algorithm without
update strategy. The experimental result shows the scalability
of incremental update strategy for more frequent database
updates characterized by a large number of transactions and
with different pattern lengths. Most algorithms [1], [2], [3],
[4], [5], [6] exploit ad hoc main memory data structures to
efficiently extract item sets from a flat file. Recently, disk-
based extraction algorithms have been proposed to support

the extraction from large data sets [7], [8], [9], but still
dealing with data stored in flat files. To reduce the
computational cost of item set extraction, different
constraints may be enforced [10], [11], [12], [13], among
which the most simple is the support constraint, which
enforces a threshold on the minimum support of the extracted
item sets.
 Relational DBMSs exploit indices, which are ad hoc data
structures, to enhance query performance and support the
execution of complex queries. In this paper, we propose a
similar approach to support data mining queries. The Imine
index (Item set-Mine index) is a novel data structure that
provides a compact and complete representation of
transactional data supporting efficient item set extraction
from a relational DBMS. It is characterized by the following
properties:
1. It is a covering index. No constraint (e.g., support
constraint) is enforced during the index creation phase.
Hence, the extraction can be performed by means of the
index alone, without accessing the original database. The
data representation is complete and allows reusing the index
for mining item sets with any support threshold.
2. The IMine index is a general structure which can be
efficiently exploited by various item set extraction
algorithms. These algorithms can be characterized by
different in-memory data representations (e.g., array list,
prefix-tree) and techniques for visiting the search space. Data
access functions have been devised for efficiently loading in
memory the index data. Once in memory, data is available for
item set extraction by means of the algorithm of choice. We
implemented and experimentally evaluated the integration of
the IMine index in FP-growth [3] and LCM v.2 [14].
Furthermore, the IMine index also supports the enforcement
of various constraint categories [15].
3. The IMine physical organization supports efficient data
access during item set extraction. Correlation analysis allows
us to discover data accessed together during pattern
extraction. To minimize the number of physical data blocks
read during the mining process, correlated information is
stored in the same block.
4. IMine supports item set extraction in large data sets. We
exploit a direct writing technique to avoid representing in
memory the entire large data set. Direct materialization has a
limited impact on the final index size because it is applied
only on a reduced portion of the data set (the less frequent
part).
The IMine index has been implemented into the PostgreSQL
open source DBMS [16]. Index data are accessed through
PostgreSQL physical level access methods. The index
performance has been evaluated by means of a wide range of
experiments with data sets characterized by different size and

Shabana Yasmeen et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 2 (5) , 2011, 1871-1875

1871

data distribution. The execution time of frequent item set
extraction based on IMine is always comparable with, and
often (especially for low supports) faster than, the state-of-
the-art algorithms (e.g., Prefix-Tree [17] and LCM v.2 [14])
accessing data on flat file. Furthermore, the experimental
results show the linear scalability of both IMine-based
algorithms also for data sets characterized by a large number
of transactions and different pattern length.

Fig. 1. Example data set.

This paper is organized as follows: Section 2 thoroughly
describes the IMine index by addressing its structure, its data
access methods, and its physical layout. Section 3 describes
how the FP-growth and LCM v.2 algorithms may exploit
IMine to perform efficiently the extraction of item sets. It
also describes how the IMine index supports the enforcement
of various constraint types.

2. THE IMINE INDEX
The transactional data set D is represented, in the relational
model, as a relation R. Each tuple in R is a pair
(TransactionID, ItemID). The IMine index provides a
compact and complete representation of R. Hence, it allows
the efficient extraction of item sets from R, possibly
enforcing support or other constraints. In Section 2.1, we
present the general structure of the IMine index; while in
Section 2.2, we discuss how data access takes place. The
physical organization of the index is presented in Section 2.3
together with a discussion of access cost. Finally, Section 2.4
discusses some optimizations for the physical storage of large
sparse data sets.
2.1 IMine Index Structure
The structure of the IMine index is characterized by two
components: the Item set-Tree and the Item-Btree. The two
components provide two levels of indexing. The Item set-
Tree (I-Tree) is a prefix-tree which represents relation R by
means of a succinct and lossless compact structure. The Item-
Btree (I-Btree) is a B+Tree structure which allows reading
selected I-Tree portions during the extraction task. For each
item, it stores the physical locations of all item occurrences in
the I-Tree. Thus, it supports efficiently loading from the I-
Tree the transactions in R including the item. In the
following, we describe in more detail the I-Tree and the I-
Btree structures. I-Tree An effective way to compactly store
transactional records is to use a prefix-tree. Trees and prefix-
trees have been frequently used in data mining and data
warehousing indices, including cube forest [18], FP-tree [3],
H-tree [19], Inverted Matrix [7], and Patricia-Tries [20]. Our
current implementation of the I-Tree is based on the FP-tree
data structure [3], which is very effective in providing a
compact and lossless representation of relation R. However,
since the two index components are designed to be

independent, alternative I-Tree data structures can be easily
integrated in the IMine index. The I-Tree associated to
relation R is actually a forest of prefix-trees, where each tree
represents a group of transactions all sharing one or more
items. Each node in the I-Tree corresponds to an item in R.
Each path in the I-Tree is an ordered sequence of nodes and
represents one or more transactions in R. Each item in
relation R is associated to one or more I-Tree nodes and each
transaction in R is represented by a unique I-Tree path.
 Fig. 1 reports (in a more succinct form than its actual
relational representation) a small data set used as a running
example, and Fig. 2 shows the complete structure of the
corresponding IMine index. In the I-Tree paths (Fig. 2a),
nodes are sorted by decreasing support of the corresponding
items. In the case of items with the same support, nodes are
sorted by item lexicographical order. In the I-Tree, the
common prefix of two transactions is represented by a single
path. For instance, consider transactions 3, 4, and 9 in the
example data set. These transactions, once sorted as
described above, share the common prefix [e:3,h:3], which is
a single path in the I-Tree. Node [h:3] is the root of two
subpaths, representing the remaining items in the considered
transactions. Each I- Tree node is associated with a node
support value, representing the number of transactions which
contain (without any different interleaved item) all the items
in the subpath reaching the node. For example, in subpath
[e:3, h:3], the support of node [h:3] is 3. Hence, this subpath
represents three transactions (i.e., transactions 3, 4, and 9)

Fig. 2. IMine index for the example data set. (a) I-Tree. (b) I-
Btree.

Shabana Yasmeen et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 2 (5) , 2011, 1871-1875

1872

 An arbitrary node (e.g., [p:3] in the example I-Tree in
Fig. 2a) includes the following links: 1) Parent pointer
(continuous edge linking node [p:3] to node [d:5]). 2) First
child pointer (dashed edge linking node [p:3] to node [g:2]).
first brother node inserted in the I-Tree after the current node.
These pointers allow both bottom-up and top-down tree
traversal, thus enabling item set extraction with various types
of constraints (see Section 3).
 The I-Tree is stored in the relational table TI_Tree, which
contains one record for each I-Tree node. Each record
contains node identifier, item identifier, node support, and
pointers to the parent, first child, and right brother nodes.
Each pointer stores the physical location (block number and
offset within the block) of the record in table TI_Tree
representing the corresponding node.
I-Btree
The I-Btree allows selectively accessing the I-Tree disk
blocks during the extraction process. It is based on a B+Tree
structure [21]. Fig. 2b shows the I-Btree for the example data
set and a portion of the pointed I-Tree. For each item i in
relation R, there is one entry in the I-Btree. In particular, the
I-Btree leaf associated to i contains i’s item support and
pointers to all nodes in the I-Tree associated to item i. Each
pointer stores the physical location of the record in table
TI_Tree storing the node. Fig. 2b shows the pointers to the I-
Tree nodes associated to item r.

2.2 IMine Physical Organization
The physical organization of the IMine index is designed to
minimize the cost of reading the data needed for the current
extraction process. The I-Btree allows a selective access to
the I-Tree paths of interest. Hence, the I/O cost is mainly
given by the number of disk blocks read to load the required
I-Tree paths.
When visiting the I-Tree, nodes are read from table TI_Tree
by using their exact physical location. However, fetching a
given record requires loading the entire disk block where the
record is stored. On the other hand, once the block is in the
DBMS buffer cache, reading the other nodes in the block
does not entail additional I/O cost. Hence, to reduce the I/O
cost, correlated index parts, i.e., parts that are accessed
together during the extraction task, should be clustered into
the same disk block. The I-Tree physical organization is
based on the following correlation types:
2.2.1 I-Tree Layers
The I-Tree is partitioned in three layers based on the node
access frequency during the extraction processes. The
frequency in accessing a node (and thus the subpath
including it) depends on the interaction of three factors: 1)
the node level in the I-Tree, i.e., its distance from the root,
2) the number of paths including it, represented by the node
support, and 3) the support of its item. When an item has
very low support, it will be very rarely accessed, because it
will be uninteresting for most support thresholds. Nodes
located in lower levels of the I-Tree are associated to items
with low support. The three layers are shown in Fig. 2a for
the example I-Tree.

Top layer. This layer includes nodes that are very frequently
accessed during the mining process. These nodes are located
in the upper levels of the I-Tree. They correspond to items
with high support, which are distributed over few nodes with
high node support. Items are chosen in the same order they
are entered in the I-Tree paths. The nodes containing the
selected items are all stored in the Top layer.
Middle layer. This layer includes nodes that are quite
frequently accessed during the mining process. These nodes
are typically located in the central part of the tree. They
correspond to items with relatively high support, but not yet
dispersed on a large number of nodes with very low node
support. We include in the Middle layer nodes with (node)
support larger than 1. Unitary support nodes are rather rarely
accessed and should be excluded from the Middle layer.
Bottom layer. This layer includes the nodes corresponding
to rather low support items, which are rarely accessed during
the mining process. Nodes in this layer are analyzed only
when mining frequent item sets for very low support
thresholds. The Bottom layer is characterized by a huge
number of paths which are (possibly long) chains of nodes
with unitary support. These subpaths represent (a portion of)
a single transaction and are thus read only few times. A large
number of low support items is included in this layer.
2.2.2 I-Tree Path Correlation
Correlation among the subpaths within each layer is analyzed
to optimize the index storage on disk. Two paths
are correlated when a given percentage of items is common
to both paths. Searching for optimal correlation is
computationally expensive since all pairs of paths should be
checked. As an alternative, we propose a heuristic technique
to detect correlation with reduced computation cost. The
technique is based on an “asymmetric” definition of
correlation. A reference path, named pivot, is selected. Then,
correlation of the other paths with the pivot is analyzed. The
pivot and its correlated paths are stored in the same disk
block.
 Since each node may be shared by many paths,
redundancy in storing the paths might be introduced. To
prevent this effect, paths are partitioned in nonoverlapped
parts, named tracks. Each node (even if shared among several
paths) belongs to a single track. Correlation between track
pairs is then analyzed.
 Tracks are computed separately in each layer. Each layer
is bound by two borders, named upper and lower border,
which contain, respectively, the root and the tail nodes for the
subpaths in the layer. For a given layer, track computation
starts from nodes in its lower border. Each node in the
(lower) border is the tail node of a different track. Nodes are
considered based on their order into the lower border. For
each tail node, its prefix-path is visited bottom-up. The visit
ends when a node already included in a previously computed
track or included in the upper border of the layer is reached.
All visited nodes are assigned to the new track. The
pseudocode for track computation is provided in Appendix
A, which can be found on the Computer Society Digital

Shabana Yasmeen et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 2 (5) , 2011, 1871-1875

1873

Library at http://doi.ieee computersociety .org/10.1109/
TKDE. 2008. 180.
 As an example, Fig. 2a shows how paths in the Top and
Middle layers are partitioned in tracks (tracks are represented
as dashed boxes). The top layer upper border
contains nodes [b:10], [a:3], [e:3] (which correspond to the I-
Tree roots) and the lower border includes nodes [d:5], [a:2],
[i:3], [i:2], [a:1]. Track computation starts by considering
node [d:5]. Its prefix-path [d:5, h:7, e:7, b:10] is a track.
After considering node [a:2], the prefix path of node [i:3] is
visited until node [b:10] is reached. Since [b:10] belongs to
the previously computed track, the new track will only
include subpath [i:3, a:3].
 After each layer is partitioned in tracks, correlation
analysis between track pairs may take place. The longest
track that can be completely stored in the block is selected as
pivot. Then, correlation between the remaining tracks and the
pivot is computed. Only tracks that can completely fit in the
remaining space in the block are considered, in decreasing
length (i.e., number of nodes in the track) order. Tracks
correlated to the pivot are stored in the same disk block.
When no more tracks can be stored in the block or no
remaining track is correlated with the current pivot, a new
block and a new pivot are selected.

3. ITEM SET MINING
 Several algorithms have been proposed for item set
extraction. These algorithms are different mainly in the
adopted main memory data structures and in the strategy to
visit the search space. The IMine index can support all these
different extraction strategies. Since the IMine index is a disk
resident data structure, the process is structured in two
sequential steps: 1) the needed index data is loaded and 2)
item set extraction takes place on loaded data. The data
access methods presented in Section 2.2 allow effectively
loading the data needed for the current extraction phase.
Once data are in memory, the appropriate algorithm for item
set extraction can be applied. In Section 3.1, frequent item set
extraction by means of two representative state-ofthe- art
approaches, i.e., FP-growth [3] and LCM v.2 [14], is
described. Section 3.2 discusses how the IMine index
supports constraint enforcement.
Enforcing Constraints
Constraint specification allows the (human) analyst to better
focus on interesting item sets for the considered analysis task.
A significant research effort [10], [11], [12], [15], [13] has
been devoted to the exploration of techniques to push
constraint enforcement into the extraction process, thus
allowing an early pruning of the search space and a more
efficient extraction process. Constraints have been classified
as antimonotonic, monotonic, succinct, and convertible [15].
These latter constraints (e.g., avg, sum) are neither
antimonotonic nor monotonic, but they can be converted into
monotonic or antimonotonic by an appropriate item ordering.
 Constraint enforcement into the FP-growth algorithm is
discussed in [15]. This approach can be straightforwardly
supported by the IMine index. More specifically, the items

of interest are selected by accessing the I-Btree. Once data
are in memory, the _-projected database is built by including
all items which follow _ in the item ordering required by
constraint enforcement. Different constraint classes may
require different item orderings, which enable early pruning
for the considered constraint class. For example, for
convertible constraints, the ordering exploited to convert the
constraint is enforced. The appropriate extraction algorithm
performs the extraction by recursive projections of the _-
projected database. Constraints are enforced during the
iteration steps.

TABLE 1
Data Set Characteristics and Corresponding Indices

4. EXPERIMENTAL RESULT
We validated our approach by means of a large set of
experiments addressing the following issues:

1. Performance of the IMine index creation, in terms of
 both creation time and index size,
2. Performance of frequent item set extraction, in terms of
 Execution time, memory usage, and I/O access time, 2
3. Effect of the DBMS buffer cache size on hit rate, 3
4. Effect of the index layered organization,
5. Effect of direct writing, and
6. Scalability of the approach.

We ran the experiments for both dense and sparse data
distributions. We report experiments on six representative
data sets whose characteristics (i.e., transaction and item
cardinality, average transaction size (AvgTrSz), and data set
size) are in Table 1. Connect and Pumsb [22] are dense and
medium-size data sets. Kosarak [22] is a large and sparse
data set including click-stream data. T10I200P20D2M is a
dense and large synthetic data set, while T15I100P20C1D5M
and T20I100P15C1D7M are quite sparse and large synthetic
data sets. Synthetic data sets are generated by means of the
IBM generator [23]. For all data sets, the index has been
generated without enforcing any support threshold.
 Both the index creation procedure and the item set
extraction algorithms are coded into the PostgreSQL v. 7.3.4
open source DBMS [16]. They have been developed in ANSI
C. Experiments have been performed on a 2,800-MHz
Pentium IV PC with 2-Gbyte main memory running Linux
kernel v. 2.7.81. The buffer cache of the PostgreSQL DBMS
has been set to the default size of 64 blocks (block size is 8
Kbytes). All reported execution times are real times,
including both system and user time, and obtained from the
Unix time command as in [22].

Shabana Yasmeen et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 2 (5) , 2011, 1871-1875

1874

5. CONCLUSIONS AND FUTURE WORK
The IMine index is a novel index structure that supports
efficient item set mining into a relational DBMS. It has been
implemented into the PostgreSQL open source DBMS, by
exploiting its physical level access methods. The IMine index
provides a complete and compact representation of
transactional data. It is a general structure that efficiently
supports different algorithmic approaches to item set
extraction. Selective access of the physical index blocks
significantly reduces the I/O costs and efficiently exploits
DBMS buffer management strategies. This approach, albeit
implemented into a relational DBMS, yields performance
better than the state-of-the-art algorithms (i.e., Prefix-Tree
[17] and LCM v.2 [14]) accessing data on a flat file and is
characterized by a linear scalability also for large data sets.
 As further extensions of this work, the following issues
may be addressed: 1) Compact structures suitable for
different data distributions. Currently, we adopt the prefix-
tree structure to represent any transactional database
independently of its data distribution. Different techniques
may be adopted (e.g., [7]), possibly ad hoc for the local
density of the considered data set portion. 2) Integration with
a mining language. The proposed primitives may be
integrated with a query language for specifying mining
requests, thus contributing an efficient database
implementation of the basic extraction statements. 3)
Incremental update of the index. Currently, when the
transactional database is updated, the IMine index needs to
be rematerialized. A different approach would be to
incrementally update the index when new data become
available. Since no support threshold is enforced during the
index creation phase, the incremental update is feasible
without accessing the original transactional database.

REFERENCES
[1] R. Agrawal and R. Srikant, “Fast Algorithm for Mining Association

Rules,” Proc. 20th Int’l Conf. Very Large Data Bases (VLDB ’94),
Sept. 1994.

[2] R. Agrawal, T. Imilienski, and A. Swami, “Mining Association Rules
between Sets of Items in Large Databases,” Proc. ACM SIGMOD ’93,
May 1993.

[3] J. Han, J. Pei, and Y. Yin, “Mining Frequent Patterns without Candidate
Generation,” Proc. ACM SIGMOD, 2000.

[4] H. Mannila, H. Toivonen, and A.I. Verkamo, “Efficient Algorithms for
Discovering Association Rules,” Proc. AAAI Workshop Knowledge
Discovery in Databases (KDD ’94), pp. 181-192, 1994

 [5] G. Ramesh, W. Maniatty, and M. Zaki, “Indexing and Data Access
Methods for Database Mining,” Proc. ACM SIGMOD Workshop Data
Mining and Knowledge Discovery (DMKD), 2002.

[6] Y.-L. Cheung, “Mining Frequent Itemsets without Support Threshold:
With and without Item Constraints,” IEEE Trans. Knowledge and Data
Eng., vol. 16, no. 9, pp. 1052-1069, Sept. 2004.

[7] G. Cong and B. Liu, “Speed-Up Iterative Frequent Itemset Mining with
Constraint Changes,” Proc. IEEE Int’l Conf. Data Mining (ICDM ’02),
pp. 107-114, 2002.

[8] C.K.-S. Leung, L.V.S. Lakshmanan, and R.T. Ng, “Exploiting Succinct
Constraints Using FP-Trees,” SIGKDD Explorations Newsletter, vol. 4,
no. 1, pp. 40-49, 2002.

[9] R. Srikant, Q. Vu, and R. Agrawal, “Mining Association Rule with Item
Constraints,” Proc. Third Int’l Conf. Knowledge Discovery and Data
Mining (KDD ’97), pp. 67-73, 1997.

[10] N. Agrawal, T. Imielinski, and A. Swami, “Database Mining: A
Performance Perspective,” IEEE Trans. Knowledge and Data Eng., vol.
5, no. 6, Dec. 1993.

[11] S. Sarawagi, S. Thomas, and R. Agrawal, “Integrating Mining with
Relational Database Systems: Alternatives and Implications,” Proc.
ACM SIGMOD, 1998.

[12] J. Han, Y. Fu, W. Wang, K. Koperski, and O. Zaiane, “DMQL: A Data
Mining Query Language for Relational Databases,” Proc. ACM
SIGMOD Workshop Data Mining and Knowledge Discovery (DMKD),
1996.

[13] M. Botta, J.-F. Boulicaut, C. Masson, and R. Meo, “A Comparison
between Query Languages for the Extraction of Association Rules,”
Proc. Fourth Int’l Conf. Data Warehousing and Knowledge Discovery
(DaWak), 2002.

Shabana Yasmeen et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 2 (5) , 2011, 1871-1875

1875

